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Abstract: Global climate change has caused severe abiotic and biotic stresses, affecting plant growth
and food security. The mechanical understanding of plant stress responses is critical for achieving
sustainable agriculture. Intrinsically disordered proteins (IDPs) are a group of proteins without
unique three-dimensional structures. The environmental sensitivity and structural flexibility of IDPs
contribute to the growth and developmental plasticity for sessile plants to deal with environmental
challenges. This article discusses the roles of various disordered proteins in plant stress tolerance
and resistance, describes the current mechanistic insights into unstructured proteins such as the
disorder-to-order transition for adopting secondary structures to interact with specific partners
(i.e., cellular membranes, membrane proteins, metal ions, and DNA), and elucidates the roles of
liquid–liquid phase separation driven by protein disorder in stress responses. By comparing IDP
studies in animal systems, this article provides conceptual principles of plant protein disorder in
stress adaptation, reveals the current research gaps, and advises on the future research direction. The
highlighting of relevant unanswered questions in plant protein disorder research aims to encourage
more studies on these emerging topics to understand the mechanisms of action behind their stress
resistance phenotypes.

Keywords: intrinsically disordered proteins (IDPs); stress response; disorder-to-order transition;
biomolecular interaction; liquid–liquid phase separation (LLPS)

1. Introduction

Human activities have released large amounts of greenhouse gases into the atmo-
sphere, causing climate change [1]. Global climate change is the main cause of abiotic
and biotic stresses for plants that include flooding, drought, heat, cold, salinity, pests, and
microbes [2]. These environmental stresses have greatly influenced plant physiological
processes and have adverse effects on agriculture productivity [2,3]. To tackle the environ-
mental stresses, sessile plants have evolved multiple processes including stress sensing,
hormone regulation, signal transduction, gene expression, and regulatory pathways to
adjust growth and development in a spatiotemporal manner [4,5]. Understanding the
mechanism of plant stress adaptation to adverse environmental conditions will open new
opportunities for agricultural applications and global food security.

Intrinsically disordered proteins (IDPs) are a group of proteins natively lacking defined
three-dimensional structures. The peculiarities of their amino acid sequences are known to
be depleted in order-promoting residues (tryptophan, cysteine, tyrosine, isoleucine, pheny-
lalanine, valine, asparagine, and leucine) and enriched in disorder-promoting residues
(arginine, proline, glutamine, glycine, glutamate, serine, alanine, and lysine) [6,7]. The
amino acid biases contribute their exceptional spatiotemporal heterogeneity and low con-
formational stability, which drive their atypical response to changing environments [6,7].
IDPs can gain structures in the presence of various osmolytes, under the changes in temper-
ature and pH, and perform a disorder-to-order transition when interacting with binding
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partners (i.e., cellular membranes, proteins, metal ions, and DNA) [6–10]. These features
allow IDPs to sense environmental changes, mediate corresponding signalling pathways,
and control and fine-tune plant metabolism in response to light, mechanical forces, pH,
redox potential, and drought/salt concentration [11–13]. Thus, IDPs are thought to play
critical roles in dynamic and plastic responses for the survival of sessile plants under the
constantly changing environment [14–16].

The great importance of IDPs in stress adaptation is shown by extremophiles (i.e.,
anhydrobiotic tardigrades and resurrection plants) exhibiting extreme tolerance to various
environmental stressors. Tardigrades survive in adverse environments via a set of highly
disordered proteins that protect biomaterial through vitrification [17,18]. Two plants
with relatively high protein disorder abundance, resurrection grass (Oropetium thomaeum)
and switch grass (Panicum virgatum), are both stress-tolerant [19]. A proteomics analysis
revealed that various IDPs were induced in the resurrection plant Haberlea rhodopensis
during stress responses [20], whereas IDPs in wheat and barley are mainly involved in
regulating cellular and biological processes in response to stress [21]. The function of IDPs
in protecting biomolecules under stress conditions has been proposed [22], but the precise
mechanisms of their action are still largely unknown.

Intrinsically disordered regions (IDRs) of transcription factors are highly adaptive and
are proposed to provide functional versatility in molecular recognition via their binding
plasticity [22–24]. IDRs can also serve as signalling hubs that regulate a diverse array of
signal transduction pathways [9,25]. IDPs/IDRs are key triggers of liquid–liquid phase
separation (LLPS) to form biomolecular condensates, which allow the spatiotemporal
organization of biochemical reactions by concentrating macromolecules locally [26,27]. In
animal cells, biomolecular condensates contribute to the biogenesis of macromolecular
machineries essential for gene expression, the sequestration of specific factors to regulate
cellular processes, and the interconnection of various diseases and innate immunity [28,29].
Recent studies revealed that plant biomolecular condensates driven by IDRs switch the
defence programming through sequestration and regulate translation and protein quality
control machineries in the plant immune response [30–32]. The study of LLPS is still an
emerging area in plant research [33], and future research providing more mechanistic
insights into how LLPS is involved in plant stress adaptation is expected.

This article summarizes the current knowledge of the physiological roles of plant IDPs
in abiotic and biotic stress responses and discusses their potential molecular functions,
highlighting the structure–function relationship of IDPs, interactions between IDPs and
their partners, and the role of LLPS under various stress conditions. This article proposes
the conceptual principles of how the structural flexibility of protein disorder leads to
plant stress adaptation and pinpoints unanswered but relevant questions and the potential
approaches to overcome the current limitation of plant IDP research.

2. Late Embryogenesis Abundant (LEA) Proteins Confer Abiotic Stress Tolerance

Plant seeds are desiccation-tolerant organs and physiologically similar to anhydro-
biosis [34]. During the late stages of seed maturation, a group of IDPs known as LEA
proteins are highly expressed in plant seeds before they enter the desiccation phase [35,36].
LEA proteins are thought to be involved in desiccation tolerance by modulating various
clients [10,35–37]. LEA proteins are widely studied in model and crop plants such as
rice, tomato, and Arabidopsis. There are 34, 60, and 51 LEA genes identified in rice [38],
tomato [39], and Arabidopsis [40], respectively. LEA genes in plants are non-randomly
distributed within the chromosomes, and segmental and tandem duplications drive LEA
gene expansion in the genome during evolution [39,41,42].

Most LEA genes have elements responding to abscisic acid (ABA) and/or a low
temperature in their promoter regions, such as ABA response elements (ABREs) and C-
repeats (CRTs), which agrees well with LEA genes being induced by abiotic stresses such as
drought, salinity, heat, and freezing in vegetative tissues [40]. Drought and salinity stresses
trigger ABA signalling, whereas sucrose-nonfermenting-1-related protein kinases (SnRK2s)
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function upstream of the transcription factors ABA-INSENSITIVE 3 (ABI3), ABI5, and
ABFs (ABA-responsive element-binding factors) to regulate the LEA gene expression via
ABRE [43,44]. Cold stress activates calcium signalling and the mitogen-activated protein
kinase cascade pathway, whereas CBFs (C-repeat binding factors) regulate the expression
of the group 2 LEA dehydrins via CRT [44] (Table 1). Most LEA proteins are part of a more
widespread group of proteins called “hydrophilins”, which are desiccation-related IDPs
and have been discovered in archeal, eubacterial, and eukaryotic domains, including yeast,
nematodes, tardigrades, and plants [34,45–47]. Hydrophilins are proposed to be stress
effectors against desiccation in anhydrobiotes [48]; therefore, it is not surprising that LEA
proteins are often involved in various stress responses such as desiccation resistance in
plants [37,44,49].

There are several well-known examples of LEA proteins in stress responses. Arabidop-
sis dehydrins EARLY RESPONSE TO DEHYDRATION 10 (ERD10) and ERD14 function
as chaperones to protect cells under a high salinity, drought, and low temperature [50];
LOW-TEMPERATURE-INDUCED 30 (Lti30) protects the membrane during cold and dehy-
dration stress [51,52]; the group 3 LEA protein COLD-REGULATED 15A (COR15A) confers
freezing tolerance by interacting with the membrane [53]; and legume physiologically
mature (PM) proteins, which belong to various LEA groups, function in abiotic stress toler-
ance [54–56]. Their proposed mechanism is discussed in the following sections. Besides the
reviews summarizing dehydrins in abiotic stress tolerance in various plant species [44,49],
recent reports showed that heterologous expression of XsLEA1-8 from the monocot resur-
rection plant Xerophyta schlechteri [57], MsLEA-D34 from alfalfa (Medicago sativa L.) [58], and
dehydrin CdDHN4 from bermudagrass (Cynodon dactylon × Cynodon transvaalensis) [59]
increased osmotic and salt tolerance in Arabidopsis. These reports suggest that in general,
stress-responsive LEA proteins confer stress tolerance among different plant species.

The analysis of LEA proteins in Arabidopsis, tomato, and orchid revealed their wide
subcellular distribution [41,60,61]. Experimental data showed Arabidopsis LEA proteins
localized to the cytosol, nucleus, mitochondria, plastid, ER, and pexophagosome [60]. Most
of the tomato LEA proteins were predicted to target the nucleus or cytoplasm, with some
in the mitochondria, chloroplasts, or extracellular matrix [41]. As well, subcellular localiza-
tion prediction indicated that orchid LEA proteins are located in the nucleus, cytoplasm,
chloroplasts, and mitochondria [61]. LEA proteins are proposed to protect the integrity
of membranes and the activity of enzymes and biomolecules under stress conditions [22].
Therefore, their ubiquitous expression might provide protection to the corresponding
membranes of various organelles as well as enzymes and sequestering targets localized in
different cellular compartments under certain stress conditions [35,60]. Multiple cellular
locations were also observed in another IDP, the Stress and Growth Interconnector (SGI),
from the oil crop rapeseed (Brassica napus), which enhanced biomass and yield under
drought conditions via multifaceted interactions with catalases and dehydrins [62]. A
wheat IDP, the Triticum aestivum Fusarium Resistance Orphan Gene (TaFROG), showed
spatial transition by changing its nucleus localization to cytosolic bodies when interacting
with SnRK1 [63]. Thus, the spatial flexibility of IDPs implies their versatile functions in
dual/multiple subcellular localizations.

Although more novel stress-responsive IDPs in plants are being investigated, LEA
proteins are still the most-studied plant IDP family (Table 2). Despite overwhelming
functional evidence suggesting that LEA proteins are widespread mediators of abiotic
stress tolerance in plants, their mechanisms of protection are largely unknown. Speculation
and preliminary studies suggested that LEA proteins could interact with vastly different
target biomolecules during stress conditions, such as molecular shielding for enzyme
protection, membrane stabilization via lipid binding, and interactions with various clients
as described in the following sections.
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Table 1. Hormone regulation of IDPs/IDRs mentioned in this article.

Hormone Regulation of IDP/IDR Function in Stress Responses Stressor Types References

ABA

The expression of many LEA genes in plants is closely regulated by ABA and the
corresponding signalling pathways. The promoter regions of LEA genes bear ABREs

and CRTs, which can be recognized by various transcription factors such as ABI3, ABI5,
ABFs, and CBPs during drought, salinity, and cold stress.

Abiotic stress [43,44]

ABA Rice RePRP is induced by water deficit and ABA in the root elongation zone and is
sufficient and necessary for repression of root development by water deficit or ABA. Abiotic stress [64]

ABA, BR
Rice REM4.1 is transcriptionally upregulated by ABA and inhibits the formation and

activation of a BR receptor kinase (BRI1-SERK1) complex, serving as a link between the
ABA and BR signalling pathways.

Abiotic stress [65]

SA The major defence hormone SA triggers AtREM1.2/1.3-dependent membrane lipid
nanodomain assembly, leading to plasmodesmata closure to impede virus spreading. Biotic stress [66]

SA SA rapidly triggers the formation of nuclear GBPL3 condensates, which reprogram gene
expression for disease resistance. Biotic stress [67]

SA SA induces NPR1 condensates in cytoplasm to sequester and degrade stress proteins
involved in cell death, promoting cell survival during the immune response. Biotic stress [30]

SA SA induces massive formation of HEM1 condensates to restrict the availability of
translation components and prevent immune gene translation during ETI. Biotic stress [32]

IDPs/IDRs, intrinsically disordered proteins/intrinsically disordered regions; ABA, abscisic acid; LEA, late
embryogenesis abundant; ABREs, ABA response elements; CRTs, C-repeats; ABI3, ABA-INSENSITIVE 3; ABI5,
ABA-INSENSITIVE 5; ABFs, ABA-responsive element-binding factors; CBPs, C-repeat binding factors; RePRP,
repetitive pro-rich protein; BR, brassinosteroid; REM4.1, REMORIN 4.1; BRI1, brassinosteroid-insensitive 1;
SERK1, somatic embryogenesis receptor-like kinase 1; SA, salicylic acid; GBPL3, guanylate-binding protein
(GBP)-like GTPase 3; NPR1, NONEXPRESSOR-OF-PATHOGENESIS-RELATED GENE 1; HEM1, named for heme
biosynthesis in the yeast homologue; ETI, effector-triggered immunity.

Table 2. Studies of late embryogenesis abundant (LEA) proteins mentioned in Section 2.

Plant Species Finding Topics References

Rice
(Oryza sativa)

Identification of 34 rice LEA genes and their transcript analysis
under untreated, abscisic acid, osmotic, and salinity

stress conditions.
Genomics [38]

Tomato
(Solanum lycopersicum)

Identification of 60 tomato LEA genes and their transcription and
expression patterns in various tissues and under abiotic stress and
phytohormone treatments. Duplication event in evolution of the

LEA family.

Genomics [39,41]

Characteristics of the LEA proteins including disorder tendency
and localization. Proteomics [41]

Arabidopsis
(Arabidopsis thaliana)

Identification of 51 Arabidopsis LEA genes and their transcription
patterns at different developmental stages, in different plant organs,

and under different stress and hormone treatments. Respective
promoter elements induced by abiotic stress.

Genomics [40]

Classification of Arabidopsis LEA proteins and their
subcellular localization. Cell biology [60]

60 plant species ranging from
green algae to angiosperms

Comprehensive synteny and phylogenetic analyses of LEA genes
across 60 complete plant genomes showed their evolution

and diversification.
Genomics [42]

Orchid
(Dendrobium officinale)

Identification of Dendrobium officinale LEA genes and their
expression patterns under abiotic stress treatments. Classification

of DfLEA proteins and their predicted subcellular localization.
Genomics [61]

Xerophyta schlechteri
Enzyme protection function of XsLEA proteins under stressful

conditions. Expression of XsLEAs increased abiotic stress tolerance
in E. coli and Arabidopsis.

Stress physiology [57]

Alfalfa
(Medicago sativa)

Expression of Medicago sativa MsLEA-D34 increased plant tolerance
to osmotic and salt stresses and caused Arabidopsis early flowering

under drought and well-watered conditions.
Stress physiology [58]

Bermudagrass
(Cynodon dactylon)

Expression of Cynodon dactylon CdDHN4-L and CdDHN4-S
increased salt tolerance in Arabidopsis, enzyme protection function,

and disordered character.
Stress physiology [59]
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Table 2. Cont.

Plant Species Finding Topics References

Common wheat (Triticum
aestivum), durum wheat (T.

durum), barley (Hordeum vulgare)

A comparison of dehydrins in common wheat, durum wheat and
barley in the context of expression patterns at transcript and protein
levels and their possible functions when exposed to various abiotic

stress factors.

Stress physiology [15]

Various A summary of structural characterization of plant LEA proteins
and their binding modes. Structural biology [22]

Various A summary of plant LEA proteins from characterization to their
functions in stress responses. Stress physiology [35]

Various A summary of LEA functions during seed maturation and seed
desiccation tolerance. Stress physiology [36]

Arabidopsis (Arabidopsis thaliana) A discussion of LEA functions in stabilizing membranes or
sensitive enzymes during dehydration. Stress physiology [37]

3. Molecular Shielding for Enzyme Protection

Many studies have shown that plant IDPs (mainly LEA proteins) are able to protect
lactate dehydrogenase enzyme activity against damage caused by desiccation, heat stress,
or freezing and thawing cycles [59,68–76]. The disorder and flexibility structure of LEA
proteins may allow them to act as a kind of “molecular shield”, forming a physical barrier
between neighbouring macromolecules and preventing their aggregation and inactivation
under stress conditions [77]. LEA proteins can act sterically as noninteracting space fillers
and/or interact with client proteins electrostatically via polar and charged amino acids. This
molecular shield function is proposed to be distinct from classical molecular chaperones as-
sisting protein folding via hydrophobic interactions and tight complex formation. However,
both protect client targets against intramolecular damage [78]. Polyethylene glycols (PEGs)
are similar to dehydrins, the group 2 LEA proteins, in terms of polar polymeric chains
with no appreciable structure. Both dehydrins and PEGs showed size-dependent enzyme
cryoprotection, which suggests that the disorder and polar nature along with the hydrody-
namic radius of the dehydrin contribute to the molecular shield mechanism [79–81]. Group
5 LEA proteins are atypical because they contain a high content of hydrophobic residues
and are proposed to be natively folded [45]. However, the group 5 LEA protein, Medicago
truncatula PM25 (MtPM25), was proved to be intrinsically disordered and able to prevent
aggregation of proteins during freezing, heating, and drying stress treatments [55]. Hy-
drophobic MtPM25 absorbs up to three-fold more water than MtEM6, a hydrophilic group
1 LEA protein. Although most LEA proteins showed hydrophilic features in their molecular
shielding function, the case of MtPM25 showed that different LEA proteins could adopt
various stress mechanisms [55]. Besides hydrodynamic volumes, LEA proteins also have an
effect on three solvent properties of water (dipolarity/polarizability, hydrogen-bond donor
acidity, and hydrogen-bond acceptor basicity), which are involved in one of the proposed
in vitro protective mechanisms of these proteins [82]. Post-translational modification such
as phosphorylation could regulate the function of LEA proteins by changing their confor-
mations and ligand binding properties [83,84]. For example, phosphorylated salt-tolerance
soybean PM18, a member of group 3 LEA proteins, confers better protection of lactate
dehydrogenase in the freeze–thaw cycles than its un- or dephosphorylated form [56].

Figure 1 illustrates plant IDPs protecting enzyme activity via a molecular shielding
mechanism. The cryoprotection activity seems to not be correlated with specific amino
acid sequences or the order of amino acid sequences but rather highly correlated with
the biophysical properties of IDPs (i.e., hydrodynamic radius, the density of charged
residues) [80,85]. Indeed, the scrambled grape dehydrin peptide showed cryoprotection of
lactate dehydrogenase similar to that of the wild-type peptide [80]. Of note, randomly se-
lected IDP fragments from the human genome, whose amino acid sequences are not related
to plant dehydrins, also conferred substantial cryoprotection of lactate dehydrogenase [85].
This example emphasized the importance of the disorder nature in the cryoprotection effect.
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Hence, further examination of enzyme protection activity toward genome-wide plant IDPs
will be critical in providing more evidence of their physicochemical properties related to
their mechanisms of enzyme cryoprotection.
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Figure 1. Putative molecular shielding mechanisms for cryoprotective activity of intrinsically dis-
ordered proteins (IDPs). During freezing stress, the enzyme (i.e., lactate dehydrogenase) increases
protein–protein contacts to cause aggregation, which inactivates enzyme activity. In the presence
of IDPs (i.e., LEA proteins) during freezing stress, the IDP acts as a shield, interfering with the
interaction of the enzyme and keeping it in an active state.

4. Disorder-to-Order Transition for Membrane Interaction

Membranes are often damaged during freezing and thawing or desiccation and rehy-
dration. The rupture of the plasma membrane is one of the most commonly used indicators
of cell death [86]. The group 2 LEA proteins, dehydrins, are often located near the mem-
brane during abiotic stress [87–90]. They prevent the formation of oxidation-modified
lipids and reduce the amount of electrolyte leakage generated by damaged membranes [91].
A recombinant citrus dehydrin prevented peroxidation of soybean liposomes in vitro, and
overexpression of this citrus dehydrin enhanced cold tolerance in tobacco [92]. Dehydrins
can alleviate oxidative damage in stressed plants by scavenging hydroxyl and peroxyl
radicals or binding metals. The major residues in many dehydrins, glycine, histidine, and
lysine, may be targets of these radicals [93–95]. Malondialdehyde is believed to be the final
product of lipid peroxidation in the plant cell membrane. It is an important indicator of
membrane system injury and disruption of cellular metabolism [96]. Malondialdehyde and
electrolyte leakage in the freezing-tolerant loquat cultivar were found to be related to its
higher accumulation of dehydrin proteins during freezing treatment [97]. Overexpression
of LEA14 in foxtail millet reduced electrolyte leakage and enhanced salt and drought
tolerance [98]. The inhibition of lipid oxidation and electrolyte leakage by LEA proteins
and dehydrins help maintain membrane stability and fluidity; the mechanism involved
may be found in the membrane binding properties in vitro.

The structural dynamics of dehydrins under stress conditions were summarized [99].
Studies regarding the in vitro interaction of dehydrins with model membranes revealed
their disorder-to-order structural transition upon membrane binding [100,101]. This in-
duced folding was shown by disordered K segments of dehydrins gaining ordered α-helix
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structures upon binding to anionic phospholipid vesicles [102] and micelles [100]. A good
example is positively charged Arabidopsis dehydrin Lti30 binding to membranes by recog-
nizing the negatively charged head groups of phospholipids [51] (Figure 2). This membrane
interaction decreases the main lipid phase transition by 2.5 ◦C in vitro [51], corresponding
to the decreased survival temperature of 3 ◦C observed in Arabidopsis overexpressing
Lti30 [89]. A nuclear magnetic resonance (NMR) analysis suggested that disordered K seg-
ments of Lti30 locally fold into α-helical structures on the membrane surface [101] (Figure 2).
Further studies showed that Lti30 may protect the cell by “cross-linking” the membrane
lipids [52] and stabilizing the lamellar multilayer structure in response to changing water
content [103]. Saltwater cress dehydrins showed induced folding [104], which induced
temperature-dependent phase transitions and domain formation of lipid bilayers [105].
Thus, the IDP–membrane interaction may affect conformation changes as well as tertiary
and quaternary associations.
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Figure 2. Motif organization and induced folding of three representative plant IDPs, Lti30, StREM1.3,
and ASR1. (A) Arabidopsis Lti30 is a dehydrin that contains six K segments flanked by histidine
(H)-rich sequences. K segments form helical conformations upon dehydration or when positively
charged lysine (K+) and histidine (H+) interact with the negatively charged head groups of membrane
phospholipids. (B) Potato remorin StREM1.3 contains the N-terminal IDR domain and a coiled-coil
(CC) region and the C-terminal anchor (CA). The lipid-induced folding of CA region interacts with
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lipid polar heads via positively charged lysine (K+). (C) The protein structure of tomato ASR1 contains
a short N-terminal consensus sequence comprising histidine (H) residues and a conserved abscisic-
acid–water deficit stress (ABA_WDS) domain based on https://www.ebi.ac.uk/interpro/protein/
UniProt/Q08655/ (accessed on 28 October 2023). (D) Disordered motif organization of tomato ASR1
drawn according to the sequences published on Goldgur et al. [106]. The three disordered motifs are
rich in histidine, lysine, and glutamic acid (HKE). ASR1 can gain ordered structures upon the binding
of zinc (Zn) at the N-terminal motif. Zn binding at the central motif contributes to the DNA-binding
activity of ASR1. H+, positively charged histidine; K+, positively charged lysine; IDR, intrinsically
disordered region.

IDPs can undergo a disorder-to-order transition and adopt ordered secondary struc-
tures such as α-helixes or β-sheets upon environmental changes (high temperature or
extreme pH) and in the presence of their binding partners, artificial and natural membranes
or osmolytes [6,107]. Besides dehydrins, various LEA proteins undergo the unfolding-to-
folding transition to gain ordered conformations in the presence of artificial membranes [83].
Sodium dodecyl sulphate (SDS) is a widely used micelle-forming detergent for generating
a membrane-like environment [108]. In the presence of SDS micelles, different groups
of LEA proteins adopt α-helical structures; these proteins include AhDHN1 (group 2)
from the halophytic species Atriplex halimus [109], pea LEAM (group 3) [110], GmPM1
and GmPM28 (group 4) from soybean [111], GmPM11 (group 1), GmPM6 (group 2), and
GmPM30 (group 3) [112]. Other popularly used membrane mimetics are palmitoyl-oleoyl-
phosphocholine (POPC) liposomes [113,114]. POPC liposomes induce secondary structure
changes of the group 3 LEA protein Arabidopsis LEA7 [115] but not the group 4 LEA pro-
tein GmPM1 [54]. The group 3 LEA protein, Arabidopsis COR15A, folds into amphipathic
α-helices upon dehydration or in the presence of high-concentration osmolytes [116,117].
COR15A interacts with POPC liposomes at the hydrophobic face of the amphipathic α-helix
via hydrophobic interaction [118] and forms oligomeric assemblies that strongly depend
on solution osmolarity [119]. The in vitro evidence leads to a hypothesis that COR15A sup-
presses the formation of non-lamellar lipids, the major cause of membrane damage upon
dehydration, and stabilizes cellular membranes to confer freezing tolerance [53,117,118].

The above examples represent the flexible nature of IDPs, whose structural properties
are regulated by the binding of a partner (i.e., membrane) as well as the environment
(i.e., solution osmolarity). The disorder-to-order conformational change reflects an elegant
mechanism of how IDPs might respond rapidly to changing environmental conditions such
as stress treatments. Potential implications of the discussed IDP structural dynamics have
been proposed as membrane stabilization to protect cells against water deprivation [83].
How conformational changes of IDPs when binding to membranes lead to retention of mem-
brane fluidity and the suppression of membrane fusion events will be the next questions to
be answered. Assigning in vivo meaning to in vitro evidence is still challenging.

5. Interactions around the Membrane

The preferred cell membrane localization of dehydrins supports their potential func-
tion in membrane protection, such as cold-acclimation-induced dehydrin localization near
the cell membranes [88–90]. Cell membranes interact with IDPs and also provide an
environment for IDPs to interact with their partners. A recent report from BiFC assays
showed that pepper dehydrin DHN3 interacts with another dehydrin, HIRD11, most
likely at the plasma membrane, but further evidence is required to address the role of this
dehydrin–dehydrin interaction in ROS scavenging for drought and salt resistance [120].
The homodimeric and heterodimeric dehydrin–dehydrin interactions can be found in
different subcellular distributions. The Arabidopsis dehydrins COR47 and ERD10 formed
homodimers in the cytoplasm and RAB18 in the nucleus and cytoplasm [121]. For the moss
dehydrin DHNA, the self-association dominates at cellular membranes and is enhanced
by high-temperature stress [122]. Moreover, the Arabidopsis dehydrins COR47, ERD10,

https://www.ebi.ac.uk/interpro/protein/UniProt/Q08655/
https://www.ebi.ac.uk/interpro/protein/UniProt/Q08655/
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and RAB18 interact with the aquaporin PIP2B at the plasma membrane [123]. The detailed
mechanism of dehydrin–dehydrin interactions and how these interactions affect the interac-
tion of dehydrins with other partners (i.e., aquaporin) await discovery. Autophagy has been
reported to regulate the heavy metal stress response [124] and salt [125] and desiccation
tolerance via an anti-cell-death function and protein quality control system [20]. Of note,
the dehydrin in Medicago truncatula, MtCAS31, interacts with the aquaporin MtPIP2;7 in
the ER for autophagic degradation under drought stress [126]. The alfalfa dehydrin DHN1
interacts with two aquaporins, PIP2;1 and TIP1;1, at the plasma membrane [127], but the
role of this interaction in controlling intracellular water content against dehydration stress
and aluminium toxicity is unknown. Nevertheless, the interaction between dehydrins and
aquaporins extends their function from membrane binding to the regulation of membrane
proteins. Oligomerization of dehydrins in various cellular compartments may suggest that
they have spatial regulation roles for interacting with corresponding membranes of various
organelles as well as various partners. Indeed, LEA proteins in Arabidopsis, tomato, and
orchid showed wide subcellular distribution [41,60,61].

Remorin is a plant-specific IDP family localized at the plasma membrane and thought
to regulate membrane nanodomain assembly [128–130]. Potato remorin 1.3 (StREM1.3) is
a case of disorder-to-order transition for membrane interaction [130]. The lipid-induced
α-helical folding region of the unstructured StREM1.3 C-terminal anchor may interact with
the lipid polar heads, whereas the hydrophobic region is embedded inside the lipid phase,
forming a nanodomain organization [130]. In comparison to membrane-induced folding
of Arabidopsis dehydrin Lti30, both Lti30 and StREM1.3 interact with lipid polar heads
through electrostatic interactions via positively charged amino acids (lysine and histidine
in Lti30 and lysine in StREM1.3; Figure 2). Although disordered K segments of Lti30 and
the C-terminal anchor of StREM1.3 differ in primary amino acid sequences, both undergo
lipid-induced folding into α-helical conformations for membrane interactions.

The study of Medicago truncatula remorin SYMREM1 suggested the scaffold role of
remorins in regulating plasma membrane nanodomains during the symbiosis process:
SYMREM1 stabilizes the interactions between FLOTILLIN 4 and LysM receptor-like ki-
nase LYK3 at the plasma membrane during nodulation-promoting signalling [131]. The
phosphorylation of remorins was modulated by biotic and abiotic stressors such as the
bacterial “elicitor” peptide Flg22, oligogalacturonides mimicking wounding and herbivory,
nitrogen deprivation, ABA, H2O2, cold, osmotic pressure, and salinity [132–135]. Percep-
tion of a virus leads to phosphorylation of group 1 remorins in Solanaceae, thus increasing
plasma membrane mobility and facilitating the interaction with remorin-interacting pro-
teins, causing an increase in callose deposition at the plasmodesmata and inhibiting virus
cell-to-cell movement [130,136–138]. In Arabidopsis, AtREM1.2 and AtREM1.3 interact
with general regulatory factor 10 (GRF10) to organize lipid raft nanodomains and par-
ticipate in plasmodesmata closure to hamper virus spread [66]. The ABA-induced rice
remorin OsREM4.1 was associated with OsSERK1 (somatic embryogenesis receptor-like
kinase 1) at the plasma membrane, whereas the phosphorylation of OsREM4.1 dissoci-
ated the OsREM4.1–OsSERK1 complex; thus, OsSERK1 was able to interact with OsBRI1
(brassinosteroid-insensitive 1) to form the OsBRI1–OsSERK1 receptor kinase complex and
activate brassinosteroid (BR) signalling: this process maintains a dynamic equilibrium
between ABA and BR signalling [65]. There was a gain of function via the heterologous
overexpression of mulberry MiREM1, foxtail millet SiREM6, and poplar PeREM6.5 in
Arabidopsis-conferred resistance to salt stress [139–141], whereas PeREM6.5 was thought
to enhance the plant’s ability to maintain ionic homeostasis under salinity by regulating
H+-ATPase activity at the plasma membrane [141].

The disorder nature enables remorins to be an interaction hub scaffolding at the plasma
membrane, interacting with various membrane proteins/receptors and thus playing a role
in plant–microbe interactions and hormone signalling during stress responses [65,142].
Important topics to be investigated in the future are the functional versatility of remorin
family members, consequences of the phosphorylation(s) of remorin-disordered regions in
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terms of conformational changes and protein–protein interactions, and the molecular mech-
anisms underlying remorin plasma-membrane–nanodomain organization under different
stress conditions. These investigations will provide a deeper understanding of the remorin
function in plant interactions with pathogens and symbionts, responses to abiotic stresses,
and hormone signalling, which is useful for engineering and modifying remorin-mediated
cellular processes for sustainable agriculture.

6. Metal Ion Binding Induced Folding of Stress-Tolerant ASR Proteins

Dehydrins and group 4 LEA proteins showed conformational changes and oligomer-
ization when bound to metal ions, which may function in reducing oxidative damage
induced by abiotic stress in plants [143–145]. Here, I discuss the group 7 LEA proteins,
which correspond to the ASR (ABA, stress, and ripening) protein family that is conserved
in many plant species but not found in Arabidopsis [45]. There are 5, 6, and 33 ASR genes
in tomato, rice, and wheat, respectively [146–148]. Many ASR genes respond to ABA and
abiotic stress such as drought, salt, and cold [146,149–155]. The ASR protein structure
consists of a short N-terminal consensus sequence comprising histidine residues and a
conserved ABA_WDS (water deficit stress) domain (pfam02496 and IPR003496) in the
C-terminal region [156,157]. Heterogeneous expression of ASR genes often confers varying
abiotic stress tolerance in different plant species. Overexpressed tomato and wheat ASR1 in
tobacco plants increased salt and drought tolerance, respectively [153,158]; overexpression
of lily ASR conferred drought and salt tolerance in Arabidopsis by increasing the expres-
sion of ABA/stress-regulated genes [159]; and overexpression of ASR from the extreme
halophyte Suaeda liaotungensis conferred tolerance to salt, drought, and low temperatures
in Arabidopsis [160]. Genetic studies revealed that ASR1-overexpressing tomato plants
showed enhanced tolerance to water stress [146,158], and OsASR1-overexpressing rice
showed enhanced salinity and drought tolerance [155], but the in vivo mechanism of how
ASR proteins enhance stress tolerance is still largely unknown.

Similar to other LEA proteins, ASR proteins are intrinsically disordered. Biochemical
and biophysical analyses of ASR proteins provided in vitro data hinting at the potential
mechanism involved. Recombinant tomato ASR1 protein possesses zinc-dependent DNA-
binding activity [161], which implies its transcription factor function as shown by tomato
ASR1 targeting cell-wall-related and aquaporin genes [162]. In vitro studies of recombinant
tomato ASR1 showed that ASR1 can adopt different conformations such as α-helix or
polyproline type II in response to environmental changes, and the binding of zinc ions pro-
motes α-helix folding and homodimerization of ASR1 [106,163,164]. Disordered segments
of tomato ASR1 are enriched with histidine, lysine, and glutamate [106,163]. As compared
with the induced folding of dehydrin K segments upon dehydration or membrane binding,
the induced folding of tomato ASR1 is due to zinc binding via histidine residues [106,163]
(Figure 2). Zinc-induced folding of ASR proteins was also observed in rice, barley, and
wheat [165,166]. ASR proteins do not contain any of the known zinc-binding motifs de-
scribed previously, such as the zinc finger, a common motif in DNA-binding proteins [167].
The abundance of histidine in ASR proteins potentially provides a hint of their possible
ability to bind bivalent cations such as zinc [161,168], but direct binding evidence is still
lacking. The structural plasticity of ASR proteins in gaining α-helix and β-strand confor-
mations supports their versatile functions; however, the structure–function relationship
in stress tolerance awaits investigation. Current data revealed that metal ion binding to
ASR proteins induces their folding, but how this conformational change relates to their
transactivation capabilities remains unclear. We do not know whether ASR proteins play a
role as a chromatin protective protein during stress or as a transcription activator in the
stress signal pathway. Future studies using chromatin immunoprecipitation assays will
help answer this question.
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7. Ectopic IDP Expression Confers Stress Tolerance in Yeast and Bacteria

Stress tolerance phenotypes have been observed in ectopic expression of some plant
IDPs in unicellular organisms such as Escherichia coli (E. coli) and yeast. The heterologous
hydrophilic domain of LEA expression conferred enhanced desiccation and oxidation toler-
ance to E. coli [169]. Arabidopsis ERD14 could protect E. coli cells under heat stress [170,171].
Overexpression of cucumber (Cucumis sativus) dehydrin CsLEA11 in E. coli enhanced cell
viability and conferred tolerance to heat and cold stress [42]. The expression of eight
Arabidopsis LEA genes enhanced desiccation tolerance in yeast [172]. In vivo expression of
XsLEAs from the monocot resurrection species Xerophyta schlechteri enhanced E. coli viabil-
ity under salt, osmotic, and heat stress [57]. Recombinant AcLEA function was evaluated
using E. coli as an in vivo model, showing an important protection role against desiccation,
oxidant conditions, and osmotic stress [173]. The moss dehydrin DHNA provides stress
tolerance to E. coli cells via proteome protection mediated by D-segments [122]. Heterolo-
gous expression of ABA_WDS domains from barley and wheat ASR proteins in the yeast
Saccharomyces cerevisiae improved its tolerance to salt, heat, and cold stresses [168].

Ectopic expression of plant LEA proteins in unicellular organisms such as E. coli and
yeast conferring stress tolerance is probably due to the widely distributed properties of
hydrophilins across kingdoms. However, plant IDPs other than hydrophilins also confer
stress tolerance in unicellular organisms. For example, a plant-specific DNA binding
with one finger (DOF) transcription factor, rice DOF27, is intrinsically disordered and is
implicated in the thermotolerance response in yeast [174]. A member from the Poaceae-
specific RICE SALT SENSITIVE 1 (RSS1) family, unstructured wheat RSS1-Like 1, enhanced
stress tolerance of Arabidopsis seedlings and yeast cells [175,176]. Therefore, ectopic
expression of plant IDPs in protecting cellular matter across multiple kingdoms of life may
not simply be attributed to the effect of the homology. The principle of physiochemical
properties governing plant IDPs underpinning their quick sensitivity and responsiveness
to changing environments and dynamic conformations to interact with various partners
for stress tolerance needs to be investigated. Given that tardigrade disordered proteins
are proposed to undergo LLPS and interact with various partners for transitioning into an
anhydrobiotic status under extreme conditions [177], LLPS is potentially a way for plant
IDPs to change the physiological status in different organisms to achieve an anhydrobiosis-
like status for stress resistance.

8. Roles of LLPS in Plant Stress Responses

Disordered proteins have phase transition properties for undergoing LLPS and form-
ing membrane-less biomolecular condensates. These properties enable a rapid assembly,
disassembly, and concentration of cellular components and facilitate the dynamic forma-
tion of local reaction centres with spatiotemporal specificity [27,178]. Notably, LLPS is
also involved in plant developmental phase transition such as flowering and seed ger-
mination [11]. The FLOWERING CONTROL LOCUS A (FCA) nuclear body driven by
highly disordered FLX-LIKE 2 (FLL2) plays a role in transcriptional regulation to control
flowering [179]. Stress granules are among the well-studied membrane-less condensates
transiently assembled via LLPS in response to stress [180,181], whereas LLPS is induced
when plants encounter various abiotic stresses such as a high temperature (35 ◦C and
37 ◦C) [182,183], a low temperature (4 ◦C) [184], salinity (0.4 M NaCl treatment) [185], and
ROS (1 mM H2O2) [186]. LLPS driven by the IDR of phytochrome B (phyB) plays a major
role in temperature sensing and thermomorphogenesis, suggesting an emerging mecha-
nism for plants to directly respond to thermal changes [187]. A plant-specific prion-like
protein was named FLOE1, the definition of floe being “a sheet of floating ice”, which is
a phase-separated body of water [188]. Upon hydration, LLPS of intrinsically disordered
FLOE1 allowed the embryo to sense water stress and promoted seed germination [188].
The importance of LLPS in the osmotic stress response was shown by the Arabidopsis
transcriptional regulator SEUSS (SEU). The IDR of SEU is responsible for forming liquid-
like nuclear condensates, which is indispensable for osmotic stress tolerance [189]. Unlike
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the well-established mechanism of FCA nuclear condensates in transcriptional control
of flowering, we do not know whether the components of SEU nuclear condensates con-
tain multiple active transcription regulators for promoting the transcription of osmotic
stress-responsive genes.

Besides the aforementioned abiotic stress responses, LLPS is also involved in the biotic
stress response as an interacting hub in plant immunity. LLPS is induced by bacterial
phytopathogens Pseudomonas syringae pv. Maculicola ES4326 and P. syringae pv. tomato
DC3000 as shown by the case of guanylate-binding protein (GBP)-like GTPases (GB-
PLs) [67]. The IDR of GBPLs is required for the assembly of LLPS-driven condensates within
the nucleus and they are called GBPL defence-activated condensates, which coordinate
defence-gene transcription for disease resistance [67]. The IDR of the salicylic acid receptor
NONEXPRESSOR-OF-PATHOGENESIS-RELATED GENE 1 (NPR1) forms cytoplasmic
condensates and serves as an interacting hub to sequester and degrade proteins involved
in programmed cell death in infection-adjacent cells with a low pathogen load [30]. LLPS
of NPR1 plays a role in switching cellular programming from effector-triggered immunity
(ETI) in infected cells to systemic acquired resistance in adjacent cells [30]. A recent report
highlighted the importance of LLPS in regulating translational reprogramming in plant
immunity [32]. Arabidopsis HEM1 (named for heme biosynthesis in the yeast homologue)
contains a plant-specific IDR called the low-complexity domain, which undergoes LLPS to
form condensates to interact with translation factors, thus suppressing translation efficiency
of the pro-death immune genes during ETI [32]. Although the interaction of HEM1 with
NPR1 in the cytoplasmic condensates has not been detected [32], both cases suggest a
common role of LLPS in balancing tissue health and disease resistance during the plant
immune response.

Protein disorder has a versatile contribution to both the plant immune system and
pathogen virulence [190,191]. The N-terminal IDR of prosystemin, the 200-aa precursor
of the peptidic hormone systemin responding to wounding and herbivore attack, was
able to induce defence-related genes and protect tomato plants against Botrytis cinerea and
Spodoptera littoralis larvae [192]. In the plant defence response, RPM1-INTERACTING PRO-
TEIN 4 (RIN4) is a negative regulator and targeted by multiple bacteria effectors [193–195].
The IDR of RIN4 was known to fold various conformations when interacting with different
partners such as bacterial effectors and be under regulation of post-translational modifi-
cation [196–199]. The latest report suggested that the intrinsically disordered nature of
RIN4 provides a flexible platform to broaden pathogen recognition specificity by estab-
lishing compatibility with otherwise incompatible leucine-rich repeat immune receptor
proteins [200,201]. Besides its involvement in plant immunity responses, LLPS is involved
in pathogen virulence. The IDR of FgRpd3 (reduced potassium dependency 3) from wheat
head blight fungus Fusarium graminearumis undergoes LLPS, which assists its interaction
with inhibitor of growth (ING) proteins for regulating histone deacetylation and gene
expression, thus affecting fungal development and pathogenicity [202].

Achieving the necessary spatiotemporal resolution to deduce the parameters that gov-
ern the assembly and behaviour of LLPS is challenging [203], especially when it involves
the dynamics and multiple subcellular locations of IDPs (i.e., LEA proteins). Therefore,
as compared with extensive studies of plant LEA proteins in stress tolerance, much less
research has investigated plant LEA proteins promoting LLPS [204]. Biomolecular conden-
sates formed by LEA proteins from the anhydrobiotic animal brine shrimp were considered
to act as protective compartments for desiccation-sensitive proteins to promote dehydration
tolerance during anhydrobiosis [205,206]. Whether LLPS has a similar role in plant LEA
protein functioning in stress tolerance still awaits investigation. Despite recent discoveries
of novel plant IDPs involved in LLPS to generate biomolecular condensates during stress
sensing and signalling, several questions remain. What are the determining factors of LLPS
for forming biomolecular condensates (i.e., specific amino acid sequences of IDPs, specific
IDP conformation, or biophysical properties)? And what are the components of biomolecu-
lar condensates in various stress situations? Future investigation dissecting the spatial and
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temporal rules guiding biomolecular condensate formation under various stress conditions
is important to understand the roles of plant IDP-driven LLPS in stress responses.

9. IDPs Interacting with the Cytoskeleton for Stress Adaptation

Changes at the cytoskeleton protein level and dynamics were observed upon cold [207],
drought [208], and heavy metal [209] stress [210]. Depolymerization of actin filaments may
prevent expansion-induced cell lysis during freeze−thaw cycles [211], and the cytoskeleton
was thought to take centre stage in abiotic stress responses and resilience [212]. The rapid
remodelling of the cytoskeleton can coordinate the movement of intracellular organelles,
formation of immune microdomain complexes, transportation of defence compounds
and turnover of recognizing receptors, cell-wall-based defence upon pathogen attack,
as well as hormone-mediated cell expansion and division under abiotic stress [213–217].
Many cytoskeleton-associated proteins are IDPs or possess extensive IDRs [218,219]. The
disordered nature of these cytoskeleton-associated proteins enables them to regulate the dy-
namics and organization of highly ordered cytoskeleton proteins for quick responsiveness
to the changing environment. Dehydrins are thought to be able to stabilize the cytoskeleton
under stress conditions, as shown by dehydrins from Thellungiella salsuginea facilitating
the polymerization of actin filaments [211]. Recent findings highlighted the importance
of IDPs in interacting with the cytoskeleton for stress adaptation in plants. Rice intrin-
sically disordered repetitive pro-rich protein (RePRP) interacts with both the actin and
tubulin cytoskeleton to generate short-but-heavy roots under a water deficit [64]. Arabidop-
sis COMPANION OF CELLULOSE SYNTHASE1 (CC1) controls microtubule bundling
and dynamics to sustain plant growth under salt stress via its intrinsically disordered
N-terminus, which can diffuse bidirectionally along the microtubule lattice [220], similar to
the mammalian tubulin-associated unit Tau [221]. As compared with the well-established
mechanism of disordered Tau-microtubule interaction causing neurodegeneration, how
protein disorders regulate cytoskeletal dynamics in plant stress responses is unclear. We
still lack studies investigating why protein disorder interacting with the cytoskeleton
results in neuron degenerative disease in mammals but stress adaptation in plants. Treat-
ment with the actin depolymerizing drug latrunculin B can destabilize the association
of SYMREM1 to the plasma membrane nanodomains [131], so the cytoskeleton may be
involved in remorin scaffolding. In fact, both rice and Arabidopsis remorins interact with
the actin cytoskeleton in plants [222–224]. The IDR of Arabidopsis remorin1.2 orchestrates
high-order self-assembly and formin clustering to mediate a nanocluster of membrane
nanodomains for actin remodelling during innate immune responses [224]. Such molecular
condensation-regulated cytoskeleton remodelling has been identified in the mammalian
system [225]. The similarity and differences of protein disorder mediating cytoskeleton dy-
namics between plant and animal systems need to be further investigated. Future research
investigating the mechanism of molecular condensation regulating the cell wall–plasma
membrane–cytoskeleton continuum during plant immune responses will answer the ques-
tion of how protein disorder affects stress sensing and signalling. Because of the continuing
race of disorder between plant hosts and pathogens, not surprisingly, a bacteria effector
hijacks the host actin cytoskeleton, as shown by the Xanthomonas effector XopR affecting
actin nucleation, crosslinking actin filaments and actin depolymerization in host cells via
IDR-mediated LLPS [226]. Thus, IDP/IDR-mediated cytoskeleton dynamics are a double-
edged sword in the biotic stress response in that they can affect membrane nanodomain
distribution for plant defence (e.g., the case of remorins) and can be a hijacked target of
pathogen infection.

10. Conclusions and Perspectives

The plasticity of IDPs is an easy and fast way for sessile plants to introduce versatility
into protein interaction networks and quickly and efficiently adapt to environmental
changes [227]. The ability of IDPs to interact with various partners gives them versatile
functions in different cellular processes at various subcellular compartments during stress
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(Figure 3). With their multiple roles explored, the next step is to apply modern technologies
in cell biology and biophysics for understanding the underlying mechanism [228–232].
Bioimaging tools are useful for studying plant physiological processes in vivo [233]. A
recent report suggested that fixation causes artifacts of LLPS in the animal system [234],
so live-cell imaging could be a preferable approach to dissect the phenomenon of LLPS.
Single-particle tracking (SPT) is a valuable method for directly measuring and calculating
the diffusion and dynamics within biomolecular condensates [203]. A recent study using
SPT in yeast cells revealed the mechanism of mobility of RAD52 (named radiation-sensitive)
within repair foci at DNA double-stranded break events and suggested that LLPS was
required for DNA repair [235]. In plants, an SPT method has been developed for studying
the distribution and dynamics of the plant membrane protein aquaporin [236]. Although
not reported so far, using SPT with super-resolution microscopy is expected to dissect
the movement of plant IDPs and the spatial and temporal regulation of LLPS (i.e., the
formation of biomolecular condensates) during stress responses by directly “observing”
how they diffuse in living cells in front of our eyes.
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Figure 3. Protein disorder is important in abiotic and biotic stress resistance in plants. (A) Intrin-
sically disordered proteins (IDPs) can undergo disorder-to-order transition and form an α-helix
to bind cellular membranes, maintaining membrane stability under freezing stress. (B) IDPs can
interact with membrane proteins such as transporters to mediate their functions under stress conditions.
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(C) During plant–pathogen interactions, IDPs mediate the molecular condensation of the cell wall–
plasma membrane–cytoskeleton continuum for immunity signalling transduction. (D) IDPs and
intrinsically disordered regions (IDRs) interact with the cytoskeletal actin filaments and microtubules
for adaptive growth under water deficit and salinity stress. (E) IDPs can form a molecular shield to
protect enzymes under stress conditions. (F) Metal ion binding of IDPs induces their conformational
changes and facilitates their interaction with DNA. (G) Liquid–liquid phase separation (LLPS) of
IDPs may regulate gene expression during plant immunity responses.

Of note, the fluorescence tags used in live-cell technology may alter LLPS and IDP
properties, potentially causing artifacts [237,238]. Therefore, biophysics approaches can
be complementary to bioimaging tools for overcoming these obstacles. Biophysics char-
acterization such as NMR spectroscopy can describe the binding mechanisms and map
the conformational dynamics of IDPs [228,239], and in-cell NMR is a promising solution
to provide their structural information in living cells [240]. A preliminary study using
in-cell NMR in bacteria showed the disordered nature of Arabidopsis dehydrin ERD14 in
the cytoplasm of E. coli [170]. Future research to investigate the conformational changes
in ERD14 upon stress treatments via in-cell NMR will help answer the question of how
ectopic expression of plant IDPs confers stress tolerance in bacteria. In plants, the current
bottleneck of in-cell NMR is the delivery of isotope-labelled proteins into living plant cells,
but exogenous agents (bacteria and viruses) and cell-penetrating peptides could be used
for eliminating the bottleneck [241]. Taken together, future research should use multidisci-
plinary approaches, especially combined with cell biology and biophysics tools, to catch
the dynamic motions of plant IDPs both in vitro and in vivo.

Plant stress-responsive IDPs can have broad application beyond plant research, based
on basic research of IDPs in plant stress responses as mentioned previously. A recent
innovation showed that a FRET biosensor can monitor rapid intracellular changes under
osmotic stress by utilizing the environmental sensitivity and structural plasticity of Ara-
bidopsis LEA4-5 protein [242]. A better understanding of the biochemical properties and
conformational information of plant IDPs under various stress conditions will provide the
knowledge needed for programming, such as the amino acid sequence and responsiveness
profiling. We should be able to produce synthetic peptides based on plant IDPs for differ-
ent applications. For example, LEA proteins have promising cryoprotection properties,
preserve desiccated biomaterials, and can act as anti-osmotic agents, which leads to novel
opportunities in biomedical and pharmacological development [243].

With an increasing human population, food security is certainly one of the most serious
global challenges today. Because IDPs have multiple functions in protecting plants under
various abiotic and biotic stress conditions, plant stress-responsive IDPs have potential
application as genetic engineering targets for generating stress-resistant crop plants. A
potential future research direction is specifically targeting stress-responsive LLPS processes
in crop plants to achieve temporary stress resistance during environmentally harsh periods.
Understanding the mechanisms used by these IDPs that allow them to mediate abiotic and
biotic tolerance in plants will not only close the knowledge gap but also reveal insights
that may revolutionize crop resilience. Using multidisciplinary technologies to unravel the
intricate workings of IDPs in plant stress adaptation will pave the way for the development
of more robust and sustainable crops to solve food security problems.
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